gfolf2/addons/terrain_3d/extras/minimum.gdshader

165 lines
6.2 KiB
Plaintext
Raw Normal View History

2024-10-20 15:47:57 -06:00
// This shader is the minimum needed to allow the terrain to function, without any texturing.
shader_type spatial;
2024-11-17 12:47:37 -07:00
render_mode blend_mix,depth_draw_opaque,cull_back,diffuse_burley,specular_schlick_ggx,skip_vertex_transform;
2024-10-20 15:47:57 -06:00
// Private uniforms
uniform float _region_size = 1024.0;
uniform float _region_texel_size = 0.0009765625; // = 1/1024
2024-11-17 12:47:37 -07:00
uniform float _vertex_spacing = 1.0;
uniform float _vertex_density = 1.0; // = 1/_vertex_spacing
uniform int _region_map_size = 32;
uniform int _region_map[1024];
uniform vec2 _region_locations[1024];
2024-10-20 15:47:57 -06:00
uniform sampler2DArray _height_maps : repeat_disable;
uniform usampler2DArray _control_maps : repeat_disable;
uniform sampler2DArray _color_maps : source_color, filter_linear_mipmap_anisotropic, repeat_disable;
uniform sampler2DArray _texture_array_albedo : source_color, filter_linear_mipmap_anisotropic, repeat_enable;
uniform sampler2DArray _texture_array_normal : hint_normal, filter_linear_mipmap_anisotropic, repeat_enable;
2024-11-17 12:47:37 -07:00
uniform sampler2D noise_texture : source_color, filter_linear_mipmap_anisotropic, repeat_enable;
2024-10-20 15:47:57 -06:00
uniform float _texture_uv_scale_array[32];
2024-11-17 12:47:37 -07:00
uniform float _texture_detile_array[32];
2024-10-20 15:47:57 -06:00
uniform vec4 _texture_color_array[32];
uniform uint _background_mode = 1u; // NONE = 0, FLAT = 1, NOISE = 2
uniform uint _mouse_layer = 0x80000000u; // Layer 32
2024-11-17 12:47:37 -07:00
// Public uniforms
uniform float vertex_normals_distance : hint_range(0, 1024) = 128.0;
// Varyings & Types
varying flat vec3 v_vertex; // World coordinate vertex location
varying flat vec3 v_camera_pos;
varying float v_vertex_xz_dist;
varying flat ivec3 v_region;
2024-10-20 15:47:57 -06:00
varying flat vec2 v_uv_offset;
varying flat vec2 v_uv2_offset;
2024-11-17 12:47:37 -07:00
varying vec3 v_normal;
varying float v_region_border_mask;
2024-10-20 15:47:57 -06:00
////////////////////////
// Vertex
////////////////////////
// Takes in UV world space coordinates, returns ivec3 with:
// XY: (0 to _region_size) coordinates within a region
// Z: layer index used for texturearrays, -1 if not in a region
2024-11-17 12:47:37 -07:00
ivec3 get_region_uv(const vec2 uv) {
ivec2 pos = ivec2(floor(uv * _region_texel_size)) + (_region_map_size / 2);
int bounds = int(uint(pos.x | pos.y) < uint(_region_map_size));
2024-10-20 15:47:57 -06:00
int layer_index = _region_map[ pos.y * _region_map_size + pos.x ] * bounds - 1;
2024-11-17 12:47:37 -07:00
return ivec3(ivec2(mod(uv,_region_size)), layer_index);
2024-10-20 15:47:57 -06:00
}
// Takes in UV2 region space coordinates, returns vec3 with:
// XY: (0 to 1) coordinates within a region
// Z: layer index used for texturearrays, -1 if not in a region
2024-11-17 12:47:37 -07:00
vec3 get_region_uv2(const vec2 uv2) {
// Remove Texel Offset to ensure correct region index.
ivec2 pos = ivec2(floor(uv2 - vec2(_region_texel_size * 0.5))) + (_region_map_size / 2);
int bounds = int(uint(pos.x | pos.y) < uint(_region_map_size));
2024-10-20 15:47:57 -06:00
int layer_index = _region_map[ pos.y * _region_map_size + pos.x ] * bounds - 1;
2024-11-17 12:47:37 -07:00
return vec3(uv2 - _region_locations[layer_index], float(layer_index));
2024-10-20 15:47:57 -06:00
}
// 1 lookup
float get_height(vec2 uv) {
highp float height = 0.0;
vec3 region = get_region_uv2(uv);
if (region.z >= 0.) {
height = texture(_height_maps, region).r;
}
return height;
}
void vertex() {
2024-11-17 12:47:37 -07:00
// Get camera pos in world vertex coords
v_camera_pos = INV_VIEW_MATRIX[3].xyz;
2024-10-20 15:47:57 -06:00
// Get vertex of flat plane in world coordinates and set world UV
2024-11-17 12:47:37 -07:00
v_vertex = (MODEL_MATRIX * vec4(VERTEX, 1.0)).xyz;
// Camera distance to vertex on flat plane
v_vertex_xz_dist = length(v_vertex.xz - v_camera_pos.xz);
2024-10-20 15:47:57 -06:00
// UV coordinates in world space. Values are 0 to _region_size within regions
2024-11-17 12:47:37 -07:00
UV = round(v_vertex.xz * _vertex_density);
// UV coordinates in region space + texel offset. Values are 0 to 1 within regions
UV2 = fma(UV, vec2(_region_texel_size), vec2(0.5 * _region_texel_size));
2024-10-20 15:47:57 -06:00
// Discard vertices for Holes. 1 lookup
2024-11-17 12:47:37 -07:00
v_region = get_region_uv(UV);
uint control = texelFetch(_control_maps, v_region, 0).r;
2024-10-20 15:47:57 -06:00
bool hole = bool(control >>2u & 0x1u);
2024-11-17 12:47:37 -07:00
2024-10-20 15:47:57 -06:00
// Show holes to all cameras except mouse camera (on exactly 1 layer)
if ( !(CAMERA_VISIBLE_LAYERS == _mouse_layer) &&
2024-11-17 12:47:37 -07:00
(hole || (_background_mode == 0u && (get_region_uv(UV - _region_texel_size) & v_region).z < 0))) {
VERTEX.x = 0. / 0.;
} else {
// Set final vertex height & calculate vertex normals. 3 lookups.
2024-10-20 15:47:57 -06:00
VERTEX.y = get_height(UV2);
2024-11-17 12:47:37 -07:00
v_vertex.y = VERTEX.y;
v_normal = vec3(
v_vertex.y - get_height(UV2 + vec2(_region_texel_size, 0)),
_vertex_spacing,
v_vertex.y - get_height(UV2 + vec2(0, _region_texel_size))
);
// Due to a bug caused by the GPUs linear interpolation across edges of region maps,
// mask region edges and use vertex normals only across region boundaries.
v_region_border_mask = mod(UV.x + 2.5, _region_size) - fract(UV.x) < 5.0 || mod(UV.y + 2.5, _region_size) - fract(UV.y) < 5.0 ? 1. : 0.;
2024-10-20 15:47:57 -06:00
}
2024-11-17 12:47:37 -07:00
2024-10-20 15:47:57 -06:00
// Transform UVs to local to avoid poor precision during varying interpolation.
2024-11-17 12:47:37 -07:00
v_uv_offset = MODEL_MATRIX[3].xz * _vertex_density;
2024-10-20 15:47:57 -06:00
UV -= v_uv_offset;
v_uv2_offset = v_uv_offset * _region_texel_size;
UV2 -= v_uv2_offset;
2024-11-17 12:47:37 -07:00
// Convert model space to view space w/ skip_vertex_transform render mode
VERTEX = (MODEL_MATRIX * vec4(VERTEX, 1.0)).xyz;
VERTEX = (VIEW_MATRIX * vec4(VERTEX, 1.0)).xyz;
NORMAL = normalize((MODELVIEW_MATRIX * vec4(NORMAL, 0.0)).xyz);
BINORMAL = normalize((MODELVIEW_MATRIX * vec4(BINORMAL, 0.0)).xyz);
TANGENT = normalize((MODELVIEW_MATRIX * vec4(TANGENT, 0.0)).xyz);
2024-10-20 15:47:57 -06:00
}
////////////////////////
// Fragment
////////////////////////
2024-11-17 12:47:37 -07:00
// 0 - 3 lookups
2024-10-20 15:47:57 -06:00
vec3 get_normal(vec2 uv, out vec3 tangent, out vec3 binormal) {
2024-11-17 12:47:37 -07:00
float u, v, height;
vec3 normal;
// Use vertex normals within radius of vertex_normals_distance, and along region borders.
if (v_region_border_mask > 0.5 || v_vertex_xz_dist < vertex_normals_distance) {
normal = normalize(v_normal);
2024-10-20 15:47:57 -06:00
} else {
2024-11-17 12:47:37 -07:00
height = get_height(uv);
2024-10-20 15:47:57 -06:00
u = height - get_height(uv + vec2(_region_texel_size, 0));
2024-11-17 12:47:37 -07:00
v = height - get_height(uv + vec2(0, _region_texel_size));
normal = normalize(vec3(u, _vertex_spacing, v));
2024-10-20 15:47:57 -06:00
}
tangent = cross(normal, vec3(0, 0, 1));
binormal = cross(normal, tangent);
return normal;
}
void fragment() {
// Recover UVs
vec2 uv = UV + v_uv_offset;
vec2 uv2 = UV2 + v_uv2_offset;
// Calculate Terrain Normals. 4 lookups
vec3 w_tangent, w_binormal;
vec3 w_normal = get_normal(uv2, w_tangent, w_binormal);
NORMAL = mat3(VIEW_MATRIX) * w_normal;
TANGENT = mat3(VIEW_MATRIX) * w_tangent;
BINORMAL = mat3(VIEW_MATRIX) * w_binormal;
// Apply PBR
ALBEDO=vec3(.2);
}